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Abstract
Extended Berkeley Packet Filter (eBPF) is a Linux subsystem

that allows safely executing untrusted user-defined exten-

sions inside the kernel. It relies on static analysis to protect

the kernel against buggy and malicious extensions. As the

eBPF ecosystem evolves to support more complex and di-

verse extensions, the limitations of its current verifier, in-

cluding high rate of false positives, poor scalability, and lack

of support for loops, have become a major barrier for devel-

opers.

We design a static analyzer for eBPF within the framework

of abstract interpretation. Our choice of abstraction is based

on common patterns found in many eBPF programs. We

observed that eBPF programs manipulate memory in a rather

disciplined way which permits analyzing them successfully

with a scalable mixture of very-precise abstraction of certain

bounded regions with coarser abstractions of other parts

of the memory. We use the Zone domain, a simple domain

that tracks differences between pairs of registers and offsets,

to achieve precise and scalable analysis. We demonstrate

that this abstraction is as precise in practice as more costly

abstract domains like Octagon and Polyhedra.

Furthermore, our evaluation, based on hundreds of real-

world eBPF programs, shows that the new tool generates

no more false alarms than the existing Linux verifier, while

it supports a wider class of programs (including programs

with loops) and has better asymptotic complexity.
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1 Introduction
We consider the problem of verifying untrusted kernel ex-

tensions. Modern operating systems achieve most of their

functionality through dynamically loaded extensions that

implement support for I/O devices, file systems, networking,

etc. Extensions execute in the privileged CPUmode andmust

therefore be trusted by the system to contain no unsafe or

malicious code. This trust is traditionally established through

the use of testing to eliminate bugs and digital signing to

prevent tampering. Additionally, formal verification tools

are sometimes used to achieve stronger assurance [16, 33].

These tools are effective at finding bugs, but do not provide

strong correctness guarantees.

Untrusted kernel extensions are a special type of extensions
that originate from untrusted sources and therefore cannot

be assumed safe even in the traditional best-effort sense.

Such extensions can be installed by non-privileged users or

contain untested code. Untrusted extensions allow applica-

tions to customize the kernel with application-specific packet

processing [6] and security policies [10], install profiling,

monitoring and debugging probes [8], and even modify how

core kernel subsystems interact with the application [14].

https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
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In the past, operating systems relied on language-based

techniques to sandbox untrusted extensions inside the kernel,

including the use of domain-specific languages [17, 27] and

bytecode interpreters [35]. This approach has become too

restrictive and too expensive for many new use cases that

require extensions with rich functionality and low overhead.

To mitigate these shortcomings, Linux recently adopted

an alternative approach based on automatic verification [45].

The new technology, called extended Berkeley Packet Filters
(eBPF), is built around a simple bytecode that gets compiled

to native CPU instructions when the extension is loaded

in the kernel. Unlike traditional bytecodes such as the Java

bytecode, eBPF’s compiler and runtime do not enforce type

or memory safety. Instead, safety is enforced by a static

verifier that checks that the program cannot access arbitrary

kernel data structures or cause page faults (we give a more

complete definition of safety in Section 4).

The Linux eBPF verifier implements an algorithm that,

in a nutshell, tracks program state using bitmasks, small-

est and largest possible values, and equivalence classes of

values using identity-tracking. The content of the stack is

tracked in certain cases. It enumerates all program paths

while heuristically avoiding suffixes whose safety is implied

by previously-seen paths. While this approach is adequate

for simpler eBPF programs (with few instructions, mostly

straight-line loop-free code with no complex pointer arith-

metic), it is proving a major roadblock as new and more

complex use cases are introduced [3, 6, 8, 11, 14].

There are four main issues eBPF developers are struggling

with. First, the verifier reports many false positives, forcing

developers to heavily massage their code for the verifier to

accept it, e.g., by inserting redundant checks and redundant

accesses (see Section 3). Second, the verifier does not scale

to programs with a large number of paths (Section 3). Third,

it does not currently support programs with loops. Finally,

the verifier lacks a formal foundation. Its algorithm is not

formally specified, and no formal argument about its cor-

rectness is given. This is a serious concern since a bug in the

verifier causing it to accept unsafe programs introduces an

easily exploitable kernel vulnerability. In fact, multiple such

bugs have been discovered recently [31].

Two aspects of the eBPF verification problem appeal to the

formal methods community. First, the need for a better verifier
is widely recognized by eBPF developers. This is in contrast

with many verification use cases, where verification tools are

facing an adoption barrier, as developers are often reluctant

to integrate these tools in their workflow, fix bugs reported by

the tool, deal with false positives, etc. The eBPF community,

on the other hand, has already embraced a development

process where every program must pass the verifier. A better

verifier, grounded in state-of-the-art verification theory and

practice, would enable a wider range of eBPF use cases and

dramatically simplify the development process.

Second, Linux executes untrusted extensions in a highly

constrained environment. Conveniently, many of these con-

straints make verification tractable in practice. In particular,

eBPF programs cannot perform dynamic allocation, access

kernel data structures or call in-kernel APIs. They run in a

single-threaded mode and their execution time is bounded

to few thousand instructions. In addition, eBPF programs

do not have indirect jumps; every jump instruction in the

program points to a fixed location in the code.

Despite these restrictions, verifying eBPF programs is far

from trivial due to their low-level nature, heavy use of point-

ers and pointer arithmetic, and reliance on register spilling.

In this paper, we set out to develop an efficient verification al-

gorithm for real-world eBPF programs that would overcome

the limitations of the current verifier. The algorithm must

support existing and emerging eBPF use cases and be prov-

ably sound. The algorithm does not have to be complete, i.e.,

it may fail to validate the safety of a well-behaved program.

However, it should empirically report few false positives on

a wide range of real-world programs.

We tackle the problem using the framework of Abstract In-
terpretation [22]. We seek an abstract domain and associated

abstract transformers that can capture the relevant state of

an eBPF program, while being efficient.

eBPF programs manipulate a fixed number of exclusively-

owned memory regions. We use a numerical abstract domain

to track pointer values by representing them as (region, offset)
pairs. We observed that memory is manipulated in a disci-

plined way which permits tracking thememory layout of the
bounded stack, while ignoring safe accesses to other regions,

including the packet (whose size is not known in advance).

Our experiments indicate that this abstraction does not lead

to false positives.

We then turn to pick a numerical domain. Our goal is to

determine the coarsest and most efficient abstraction that

is precise enough for eBPF programs. We experiment with

different abstractions, ranging from simple and lightweight

ones like the Interval domain [21] to expensive relational

domains like Octagon [38, 47] and Polyhedra [24]. We use a

collection of 111 real-world benchmarks in this initial evalu-

ation (see Section 7). Our results indicate that simple numer-

ical domains such as Interval are not sufficiently expressive,

while more powerful domains such as Octagon and Poly-

hedra are prohibitively expensive in the context of eBPF

verification.

We strike the balance between speed and precision by

choosing the Zone abstract domain [36]. Zone is a relational

domain that supports predicates of the form X − Y ≤ C ,
where X and Y are variables andC is a constant. It has cubic

worst case complexity in theory and is fast in practice.

We implemented the proposed abstract domain in the Crab

abstract interpretation framework [30]. In addition to the

111 benchmarks used in development, we applied the tool to

81 additional programs, some of which are relatively large
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and complex, with a single false positive. Our results can be

summarized as follows:

Precision We show that our memory abstraction with

Zone is sufficiently powerful to verify real-world eBPF

programs. In particular, it is as precise in practice as the

more costly abstractions such as Octagon and Polyhe-

dra. It is furthermore at least as precise as the current

Linux verifier, while being able to correctly verify pro-

grams where the Linux verifier returns false positives.

Performance We were able to verify each of the bench-

mark programs in 5.2 seconds or less, at average rate of

roughly 1500 instructions per second. While the Linux

verifier was faster on these benchmarks (most of which

were hand-crafted to work well with the Linux veri-

fier), our algorithm enjoys better asymptotic behavior,

being able to verify programs where the Linux verifier

times out.

Support for loops We, for the first time, enable verifica-

tion of safety of eBPF programs with loops. To validate

this capability, we created additional benchmarks with

loops and successfully applied our tool to prove their

safety. This is one of the most desired features by the

Linux community, especially important to enable writ-

ing library functions.

2 Background on eBPF
eBPF bytecode is an evolution of the Berkeley Packet Filter

(BPF) [35] technology that enabled safe execution of user-

defined network packet filters inside the kernel. eBPF adapts

the BPF instruction set to modern CPU architectures and

a wider range of use cases [45]. It also introduces a richer

memory model, described below. Most importantly, while

BPF relied on an interpreter to safely execute programs, eBPF

introduced a new toolchain consisting of a static verifier and

compiler to the native CPU instruction set. eBPF bytecode

can also run in an interpreter; however the interpreter as-

sumes that the bytecode has passed the verifier and thus

avoids costly runtime safety checks.

eBPF programs can be written directly in bytecode, but

are typically written in C and compiled to bytecode by the

llvm eBPF backend [7]. The llvm compiler is not part of

the trusted computing base (TCB); therefore verification is

performed at the bytecode level. eBPF instructions operate

over eleven 64-bit registers r0..r10; Table 1 illustrates the
four main classes of instructions.

eBPF programs can be attached to a predefined set of ker-

nel events such as arrival of a packet at a network interface

or execution of a system call by a process. Linux version

1.19 defines 21 event types and corresponding eBPF program
types, and the list is growing rapidly.

Control flow. An eBPF program is triggered by an occur-

rence of the event the program is attached to. Execution starts

at the first instruction and terminates at the exit instruction.

Table 1. Example of eBPF instructions.

Category Example Description
Arith. r1 += r2 Add register r2 to r1
Memory r1=*(u64*)(r2+3) Load 64-bit at address r2+3
Branch if r1<=r2 goto +5 Skip 5 instructions if r1<=r2
Call call 5 Call helper function #5

The verifier guarantees termination by disallowing programs

with loops. Since all jump instructions have constant jump

offsets, loop termination is trivially enforced by checking

that the program control-flow graph (CFG) is acyclic. In this

work, we relax this requirement and introduce support for

verifying safety of programs with loops.

eBPF programs have two ways of calling external code.

First, the Linux kernel exports a fixed set of helper functions
that can be invoked at any point in the program. Helper

functions have well-defined effect on registers, and each

helper has a signature defining which memory locations

it can access or modify. Second, a program can perform a

tail-recursive call to another eBPF program. To guarantee

termination, recursion depth has a constant limit at runtime.

Tail recursion does not affect verification, since the safety of

each program can be established in isolation.

Memory model. An eBPF program can access a fixed set

of memory regions, known at compile time: (1) the context
region stores fixed-size invocation arguments specific to the

given program type; (2) the packet region stores variable-

size arguments, e.g., a network packet; (3) the stack region

is a 512-byte scratch memory, typically used as program

stack. The program can acquire access to additional regions

via the maps API [5]. Such regions can be shared by mul-

tiple processes, as well as between kernel and user-space

applications. We discuss shared regions in Section 4.

All regions except packet have statically known sizes.

The size of packet is established at runtime by reading its

start and end addresses from predefined location inside the

context region (see Section 3).

Verification goal. The eBPF verifier must establish the fol-

lowing three properties:

• Memory safety: The program is only allowed to access

memory locations within its allocated regions.

• Information flow security: Many eBPF programs run

on behalf of non-privileged users and are therefore

not allowed to leak any internal kernel data structures

(except the ones explicitly passed as arguments to the

program) to the user. Memory safety ensures that the

program cannot access any kernel state outside of its

memory regions. The only remaining way for the pro-

gram to observe secret kernel state is by reading unini-

tialized registers or stack locations. Therefore such

uninitialized reads are considered safety violations.

• Termination: All program executions must terminate.



PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Gershuni, Amit, Gurfinkel, Narodytska, Navas, Rinetzky, Ryzhyk, and Sagiv

Table 2. Simple eBPF program. data and data_end variables point to the start and end of the packet region.

C code Bytecode Invariant
Precondition: data = *(u32*)(r1+76), data_end = *(u32*)(r1+80)

long *start=(void*)ctx->data; 1: r3 = *(u32 *)(r1 + 80) r3=data_end
long *end=(void*)ctx->data_end; 2: r1 = *(u32 *)(r1 + 76) r3=data_end, r1=data
if (start+1 > end) return; 3: r2 = r1+8 r3=data_end, r1=data, r2=data+8

4: if r2>r3 goto <EXIT> r1=data, data+8 <= data_end
assert r1 >= data && r1<=data_end-8

*start = 0; 5: *(u64*)(r1) = 0
EXIT: exit

In this work, we focus on the first two properties. Our

verifier does not currently implement termination check. All

existing eBPF programs are acyclic and therefore trivially

terminating. For programs with loops, our algorithm verifies

safety, but not termination. See Section 6 for more details.

3 Motivating Examples
We motivate the design of our abstract domain by exploring

common patterns found in real-world eBPF programs. We

consider several example programs that summarize insights

distilled from hundreds of real-world kernel extensions.

Example 3.1 (A simple eBPF program). The program in

Table 2 shows a common pattern found in many eBPF pro-

grams. The first column shows the C code for this example.

The ctx variable is a pointer to the context region, whose
content is a C struct that stores pointers to the start and the

end of the packet region in ctx->data and ctx->data_end
fields. The program checks if the packet region has enough

space for an 8-byte write before performing the write.

The eBPF verifier operates on the bytecode representa-

tion of this program, shown in the second column. Before

executing the program, the eBPF loader sets register r1 to
point to the start of the context region. The precondition
in the top row of the table specifies the location of packet
region pointers within context (here data and data_end
are ghost variables pointing to the start and end of the re-

gion). The program reads these pointers in lines 1 and 2 and

checks that the end address is at least 8 bytes larger than

the start (lines 3 and 4). If so, it writes an 8-byte value at the

start of the region (line 5). The assertion before line 5 is the

safety condition, which states that the memory access falls

within the bounds of the packet region. The last column of

the table lists postconditions of each instruction sufficient to

validate the assertion (in particular, the last postcondition

r1 = data, data+8 <= data_end implies the assertion).

Note that even in this trivial program proving safety re-

quires establishing invariants relating two program variables,

e.g., r2 = data+8. We avoid this constraint using an offset-

based encoding that models pointers as (region, offset) pairs,

where the first component identifies the memory region the

pointer addresses and the second component is the offset

within the region (Section 4). Using this encoding, our tool

generates the constraint r2 = 8.

Example 3.2 (Ternary invariant). The program in Table 3

is similar to the first example, but uses a value read from r5
as a variable offset into the packet region. Proving its safety
requires ternary constraints, e.g., data+r5+8 <= data_end.
The offset-based encoding only reduces this constraint to

two variables, r5+8 <= data_end. This indicates that non-
relational abstract domains, such as the Interval domain [21],

are insufficient in eBPF verification.

Observation 1. The analysis must track binary relations
among registers.

Table 3. A program that performs write at a variable offset and requires invariants over three variables.

Bytecode Invariant
1: r5 = ... (r5 is initialized.)

2: r3 = *(u32 *)(r1 + 80) r3 = data_end
3: r1 = *(u32 *)(r1 + 76) r3 = data_end, r1 = data
4: r2 = r1+r5 r3 = data_end, r1 = data, r2 = data+r5
5: if r2<r1 goto <EXIT> r3 = data_end, r1 = data, r2 = data+r5, data+r5 >= data
6: r2 = r2+8 r3 = data_end, r1 = data, r2 = data+r5+8, data+r5 >= data
7: if r2>r3 goto <EXIT> r1 = data, data+r5 >= data, data+r5+8 <= data_end
8: r1 = r1 + r5 r1 = data+r5, data+r5 >= data, data+r5+8 <= data_end
assert r1 >= data && r1<=data_end-8
9: *(u64*)(r1) = 0
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Table 4. Register spilling. This program is similar to the one in Table 2, but it additionally spills register r3 on the stack in

line 3 (eBPF register r10 is an immutable pointer to the bottom of the stack region). The spilled value is loaded to register r4
in line 4. Highlighted invariants show how information is tracked through the stack.

Bytecode Invariant
1: r3 = *(u32 *)(r1 + 80) r3 = data_end
2: r1 = *(u32 *)(r1 + 76) r3 = data_end, r1 = data
3: *(u64*)(r10-8) = r3 r3 = data_end, r1 = data, *(u64*)(r10-8) = r3
... (r3 is overwritten, *(u64*)(r10-8) = data_end )

4: r4 = *(u64*)(r10-8) r4 = data_end, r1 = data
5: r2 = r1+8 r4 = data_end, r1 = data, r2 = data+8
6: if r2>r4 goto <EXIT> r1 = data, data+8 <= data_end
assert r1 >= data && r1<=data_end-8
7: *(u64*)(r1) = 0

All invariants we have encountered so far (with the excep-

tion of program preconditions) were over program registers.

It is tempting to restrict our abstract domain to only such

predicates, while abstracting away the content of memory.

Although appealing from the performance perspective, such

an abstraction would be imprecise in practice. When the

working set of a program does not fit in registers, parts of it

must be temporarily spilled to the stack.

Example 3.3 (Register spilling). Table 4 shows a modified

version of Example 3.1 that temporarily stores the value of

r3 on the stack. Proving safety of this code requires tracking

memory content via the invariant *(u64)(r10-8)=data_end .

Observation 2. The analysis must track values in memory,
including relations between different locations, as if they were
registers.

Example 3.4 (Loops). Consider the strncmp function in Fig-
ure 1. When n is known at compile time, the eBPF toolchain

handles such code by inlining and unrolling the body of the

function. This transformation is not applicable when n is

variable, even if it has a known static bound, e,g.:

if (n < 100) strncmp(s1, s2, n)

Furthermore, the break statements in the body of the loop

lead to path explosion, e.g., consider the following program:

strncmp(s1, s2, VALUE_SIZE );

strncmp(s3, s4, VALUE_SIZE );

The programhas the number of paths quadratic in VALUE_SIZE,
which quickly overwhelms the path enumeration-based Linux

eBPF verifier. (See Figure 11).

int strncmp(char* p1, char* p2, size_t n) {

for (size_t i=0; i < n; i++) {

if (p1[i] != p2[i]) return 0;

if (p1[i] == '\0') break;

}

return 1;

}

Figure 1. eBPF program with a loop.

These issues severely limit the use of loops in eBPF programs.

Observation 3. As eBPF programs are getting larger and
more complex, verification via path enumeration is becoming
infeasible. Abstract interpretation can potentially overcome the
path explosion with the help of join and widening operators,
which trade precision for performance.

Summary. We briefly summarize the properties of eBPF

programs that guide our choice of verification methodology.

On the one hand, eBPF programs do not contain several

sources of complexity common in software verification such

as dynamic memory allocation, concurrency, and function

pointers. In addition, none of the eBPF programs we have

encountered manipulate complex data structures like lists,

trees or maps. Finally, eBPF verification focuses on safety, as

opposed to more complex properties like functional correct-

ness or complex temporal properties.

On the other hand, the eBPF verifier must perform precise

pointer analysis without relying on high-level type infor-

mation, which is not available at the bytecode level. The

analysis must be sound and produce few false positives. This

requires tracking pointers and offsets through memory and

registers. The analysis must handle programs with loops and

should not explode with the number of program paths.

4 Programming Model
This section defines eBPFPL—a core low-level programming

language for kernel extensions which captures the essence

of eBPF programs. Section 4.1 provides the syntax of the lan-

guage and Section 4.3 defines its concrete operational seman-

tics. The semantics enforces safety at runtime by aborting

into an error state when it detects a safety violation. The

abstract interpretation algorithm in Section 5 conservatively

over-approximates this semantics. Thus, if the analyzer man-

ages to verify that a program never aborts, it effectively

establishes that it is safe to execute the program in the ker-

nel. The semantics abstracts away certain details regarding

the treatment of maps, library functions and overflows (see
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cmd ::= w :=E | w :=sz ∗ p | ∗p :=sz x
| assume(B) | w := shared K

E ::= K | x | x+y | x−y
B ::= x =y | x ,y | x ≤y

Figure 2. Primitive commands. K denotes a numeral.

Section 6). In particular, in this section and in Section 5 we

assume the semantics can represent numerical values using

mathematical integers.

4.1 Core Programming Language for eBPF
As variables, eBPFPL programs use a fixed set of registers
Register = {r0, . . . , r10, data_start, data_end}, ranged over

by meta-variables p,w,x ,y.
An eBPFPL program is represented as a control graph

whose edges are annotated with the primitive commands

listed in Figure 2: A primitive command cmd is either an

assignment of an expression E to a register, a byte addressable
load or store of sz bytes, where sz is either one, two, four,

or eight bytes, an assume(B) statement which filters out

states in which the boolean condition B does not hold, or

a sharedK command which returns a pointer to a shared
region of size K bytes. (We discuss shared regions below.)

4.2 Design Consideration
We motivate our formalization by discussing some of the

peculiarities regarding the way eBPF programs access the

memory, and our abstraction of these operations.

Memory regions. A memory region is a disjoint, contigu-

ous and byte-addressable memory area. eBPF programs ma-

nipulate two kinds of regions: private regions, which can be

accessed only by the program, and shared regions, which are

used for intra-kernel inter-process communication.

Each eBPF program has three private regions: context,
stack, and packet. The context region is a small read-only

memory area of a compile-time known size and format which

is used to transmit information from the kernel to the eBPF

program. The stack region is comprised of 512 bytes which

function as scratch memory which is mainly used for register

spilling and transferring parameters to library functions. The

packet region stores an incoming/outgoing network packet.

The size of the packet is not known at compile time, and

only an upper bound is known. Instead, pointers to the start

and end of the packet are stored in predefined locations

in the context. Our semantics checks that accesses to the

private regions are within their bounds, however it only

tracks the contents of the stack region: The packet region

stores only numerical values which do not affect the safety

of the program, and the only information our analysis needs

from the context region is the size of the packet region. Thus,

for simplicity, we assume to have two immutable registers

pointing to the start (data_start) and the end (data_end) of
the packet region.

Shared regions are used to share data between different

running processes. As shared regions can be overwritten

at any moment, our semantics does not keep track of their

contents. Instead, it only verifies that they are not accessed

out of bound. eBPFPL abstracts away the details of how

shared regions are obtained. We use the sharedK command

which returns a pointer to the beginning of an arbitrary

(fresh or existing) shared region of size K .

Values and tags. The values a program manipulates are

either numbers or pointers. We record the values of pointers

as offsets from the beginning of the region they point to.

We distinguish numerical values from pointers using tags: A

value tagged num is a numerical value, while a value tagged

R is a pointer offset into region R.

Memory accesses. Memory regions are byte-addressable.

For example, ifp points to the beginning of the stack, then the
command ∗p :=4 3writes the value 3 to the first four bytes in
the stack. If the next command executed is ∗p :=2 13 then the

first two bytes in the stack are overwritten with the value 13,

leaving the third and fourth byte with an implementation-

dependent value.

Our analysis does not track partially-overwritten values:

when the program loads an indefinite value, i.e., executes a
load instruction that access bytes that were not the target

of a single store operation (e.g., only loading the fourth byte

after the store of 13), the result is a nondeterministically

chosen value whose tag is either num, if all the loaded bytes

contained numerical values, or the invalid tag inv, otherwise.
We do so because we wish to allow unaligned, partial and

overlapping accesses to numerical values, but not to point-

ers. This prevents gleaning information out of its byte-level

representation, as could have happened if these bytes are

treated as if they contain numerical value. Leaking such in-

formation is dangerous as it can allow malicious users to

gain insight into the memory layout of the kernel. (Note that

when an eBPF program executes on a standard machine such

an accesses would return the actual contents of the memory.)

4.3 Concrete Semantics
We now present non-standard concrete semantics. The goal

is to formalize the safety properties we validate, and to serve

as a stepping stone towards the analysis by abstracting away

certain details.

4.3.1 Machine States
Figure 3 defines the semantic domain of machine states. A
machine state is a triple σ = (e, µ, ζ ) comprised of an envi-
ronment e , which maps register names to their contents; a

memory µ, which maps memory cells—subsegments of the

stack region identified by their start address a and their size

sz—to their contents; and ζ , a set of addresses in the stack
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that hold a number or part of it, but not a pointer, or parts

of which. Registers and cells store tagged values, i.e., pairs
(R,n) comprised of a tag R ∈ R and an integer n ∈ Z. The
set R contains the numerical tag (num), the invalid tag (inv),
private region identifiers (ctx, stk, pkt), and shared region

identifiers from the unbounded set Shared.

Notation. In the following, we denote the value and type of

a register x in environment e by en(x) and eρ (x) respectively.
Similarly, we denote the value and tag of every memory cell

c in memory µ by µn(c) and µρ (c), respectively.

Initial states. A state (e, µ, ζ ) is an initial state if register
r10 points to the end of the stack, i.e., e(r10) = (stk, 512);
e(data_start) = (pkt, 0), and eρ (data_end) = pkt; register r1
points to the beginning of context region, i.e., e(r1) = (ctx, 0);
for any other register x , e(x) = (inv, 0); and no memory cell

is present or might be considered to contain a numerical

value, i.e., dom(µ) = ∅ and ζ = ∅.

4.3.2 Operational Semantics
eBPFPL has a small-step operational semantics, which is an

adaptation of a standard two-level store semantics to abort

the program in a special error state  if it is about to perform

an unsafe operation, and to treat loads and stores that overlap

existing values in the aforementioned conservative way.

Formally, the semantics of a program is defined as a tran-

sition relation · ⇒ · which checks that executing the com-

mand is safe using the Safe() predicate before continuing
according to the transition relation of safe commands ⇒:

⟨cmd, σ ⟩ ⇒ 

{
σ ′ Safe(cmd,σ ) ∧ ⟨cmd, σ ⟩ ⇒ σ ′

 otherwise

A state σ is reachable in a program P if there is an execu-

tion of P which starts at an initial state which produces σ . An
eBPFPL program P is safe if does not reach the error state.

Enforcing safety. Executing a command is not safe if it

results in a meaningless value (e.g., the sum of two pointers),

leaks information regarding the layout of different regions

(e.g., by comparing a pointer to any number other than zero),

or leads to a memory fault (e.g., by writing outside a memory

region). To enforce memory safety, we assume that when

P executes it has access to an immutable size map sizeof ∈

(R \ {num, inv}) → Nwhich gives the size of every memory

region where sizeof (stk) = 512.

We formalize the notion of safety using a predicate Safe(cmd,σ )
which determines if it is safe to execute cmd on state σ =
(e, µ, ζ ). The safety predicate is a conjunction of a generic

condition Safeinv and a command-specific condition Safecmd ,

i.e., Safe(cmd,σ ) = Safeinv(cmd,σ ) ∧ Safecmd(σ ) .
The generic condition states that no register mentioned

in a statement whose value is read can hold an invalid value:

Safeinv(cmd,σ ) = inv < {eρ (x) | x ∈ ReadRegs(cmd)} ,
where ReadRegs(cmd) denotes the set of registers whose

values are read in cmd.

R = Shared ∪ {ctx, stk, pkt, num, inv}

a ∈ Address = {0, . . . , 511}
e ∈ Env = Register → (R × Z)

c ∈ Cell = Address × Size
µ ∈ Mem = Cell ↪→ (R × Z)
ζ ∈ Format = 2

Address

σ ∈ State = Env ×Mem × Format

Figure 3. Semantic domains.

We now specify command-specific safety conditions.

An assignmentw :=E is safe unless its evaluation leads to

undefined pointer arithmetics operations, i.e., its evaluation

either subtracts two pointers to the same region, or adds

(subtracts) a numerical value to (from) a pointer. Specifically,

pointers to distinct regions cannot be subtracted.

Safew := E (σ ) =


eρ (x) = num ∨ eρ (y) = num E = x + y

eρ (x) = eρ (y) ∨ eρ (y) = num E = x − y

true otherwise

Filtering states using an assume(B) command is safe if it

does not leak information regarding the relative addresses

of different memory regions, e.g., by comparing a pointer to

a non-zero number or testing the relative order of pointers

to distinct regions. (Below, ▷◁∈ {=,,}.)

Safeassume(x ▷◁y)(σ ) = eρ (x) = eρ (y) ∨ e(x) = (num, 0)
∨ e(y) = (num, 0)

Safeassume(x ≤y)(σ ) = eρ (x) = eρ (y)
Load and store commands are safe if they only access bytes

within the region, and do not write pointers to externally-

visible locations:

Safew :=sz ∗p (σ ) = inbounds(eρ (p), en(p), sz) ∧ eρ (p) , num

Safe∗p :=sz x (σ ) = inbounds(eρ (p), en(p), sz) ∧ eρ (p) , num

∧ eρ (x) , num → eρ (p) = stk

inbounds(R,a, sz) =

{
0 ≤ a ≤ en(data_end) − sz R = pkt
0 ≤ a ≤ sizeof (R) − sz otherwise

Note that the bound check for the packet region is done with

respect to data_end and not data_end − data_start. This is
because data_start points to the beginning of the region and

thus its offset is zero.

Meaning of safe commands. Figure 4 defines the meaning

of primitive commands whose execution is deemed to be safe.

(We use (a, sz) = {i ∈ Z | a ≤ i < a + sz} to denote set of

integers from a ∈ Z to a + sz − 1, where sz ∈ Size.)
The meaning of assignments is quite standard. Note that

pointer arithmetics between a pointer to region R and a num-

ber results in a pointer to region R and that it is possible that

the pointer’s offset would be out of bounds, but any attempt

to dereference such a pointer would abort the program.
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⟨w := K, σ ⟩ ⇒ (e[w 7→ (num,K)], µ, ζ )
⟨w := x, σ ⟩ ⇒ (e[w 7→ e(x)], µ, ζ )

⟨w := x + y, σ ⟩ ⇒ (e[w 7→ (R, en(x) + en(y))], µ, ζ )
where R = if (eρ (x) = num) then eρ (y) else eρ (x)

⟨w := x - y, σ ⟩ ⇒ (e[w 7→ (R, en(x) − en(y))], µ, ζ )
where R = if (eρ (x) = eρ (y)) then num else eρ (x)

⟨w := sharedK , σ ⟩ ⇒ (e[w 7→ (R, 0)], µ, ζ )
where R = num ∨ (R ∈ Shared ∧ sizeof (R) = K)

⟨∗p :=sz x , σ ⟩ ⇒ (e, µ ′, ζ ′) if eρ (p) = stk
where (µ ′, ζ ′) = Store(µ, ζ , (en(p), sz), e(x))

⟨∗p :=sz x , σ ⟩ ⇒ σ if eρ (p) , stk

⟨w :=sz ∗p, σ ⟩ ⇒ (e[w 7→ v], µ, ζ ) if eρ (p) = stk
where v ∈ Load(µ, ζ , (en(p), sz))

⟨w :=sz ∗p, σ ⟩ ⇒ (e[w 7→ v], µ, ζ ) if eρ (p) , stk
where v = (num, β) ∧ β ∈ Z

⟨assume(x=y), σ ⟩ ⇒ σ if en(x) = en(y) ∧ eρ (x) = eρ (y)
⟨assume(x,y), σ ⟩ ⇒ σ if en(x) , en(y) ∨ eρ (x) , eρ (y)
⟨assume(x≤y), σ ⟩ ⇒ σ if en(x) ≤ en(y)

Figure 4. Meaning of safe commands. σ = (e, µ, ζ ). The
functions Store and Load are defined in Figure 5.

A commandw := sharedK attempts to retrieve a pointer

to a shared memory region of size K . It might return a fresh

pointer, a pointer that was returned from a similar command

earlier, or a null value (num, 0).
A (safe) store to the stack ∗p :=sz x removes any segments

overlapping with (en(p), sz) from the memory, and maps this

cell to the contents of x . It also updates ζ , adding the cell’s
bytes, if a number is written, and removes them otherwise.

Note that storing a pointer into a memory cell which over-

laps an existing memory cell c containing a numerical value

leaves the non-overwritten addresses of c in ζ .
A (safe) load from the stackw :=sz ∗p tries to load the cell

(en(p), sz). If it does not succeed,w is set to have an arbitrary

value and its tag is set to num if ζ assures us that the read

addresses do not contain pointers, or fragments of, and to

inv otherwise.
Loads from any other region return an arbitrary numerical

value. A store to any other region has no internally visible

effect. (Recall that in our semantics we assume that the point-

ers to the beginning and the end of the packet are stored in

immutable registers and not in the context.)

The meaning of assume commands is straightforward.

Note that pointer equality holds only if they point to the

same region. Recall that pointers can only be compared to

other pointers in the same region or to zero. In particular, a

safe comparison between a pointer and a numerical value

never holds because the regions are distinct.

Store(µ, ζ , c, (R,n)) = (µ ′[c 7→ (R,n)], ζ ′)

where µ ′ = µ[co 7→ ⊥ | co ∈ Cell ∧ co ∩ c , ∅]

ζ ′ = if (R = num) then (ζ ∪ c) else (ζ \ c)

Load(µ, ζ , c) = if (c ∈ dom(µ)) then {µ(c)} else ({R′} × Z)
where R′ = if (c ⊆ ζ ) then num else inv

Figure 5. Helper functions for load and store commands.

5 Static Analysis
In this section, we describe a static analysis that conserva-

tively verifies that an eBPFPL program is safe. The analysis
is parametric: It uses a numerical domain DN to abstract

numerical values and a tag domain DT to abstract bounded

sets. The former is used to conservatively track the numeri-

cal values and offsets stored in variables and memory cells

and the latter to conservatively track their tags.

We define the abstraction in two steps: First we abstract

the tags of pointers to shared regions by the sizes of the

regions they point to. This bounds the number of possible

tags in any program P . We then abstract the resulting states

by applying the numerical and tag domains to obtain an

effective static analyzer.

In the rest of this section, we assume to work with a fixed

arbitrary program P and size map sizeof ().

5.1 Abstracting Shared Regions
Our first step in the abstraction is replacing each shared

region with its size. We denote the set of abstract tags of P
by T = TShared ∪ {ctx, stk, pkt, num, inv} , where TShared =

{K | (w := sharedK) ∈ P}. Note that the T is similar to R,

except that it replaces the (unbounded) set of shared region

identifiers found in R with the (bounded) set of the sizes K
which appear in sharedK commands in P .

Memory states with abstract tags. The set of machine
states with abstract tags �State is similar to that of the concrete

semantics except that it tags values using abstract tagsT ∈ T

instead of concrete tags R ∈ R. For notational convenience,

we also use pairs of mappings to values and tags instead

of using maps to tagged values; this change does not incur

information loss.

(eτ , µτ ) ∈ Tags = (Register → T) × (Cell ↪→ T)

(en , µn) ∈ Values = (Register → Z) × (Cell ↪→ Z)

σ̂ ∈ �State = Tags × Values × Format

We define an abstraction function β ∈ State → �State
which replaces shared region tags with abstract tags:

β(e, µ, ζ ) = ((eτ , µτ ), (en , µn), ζ ), where

eτ =

{
sizeof (eρ (x)) eρ (x) ∈ Shared

eρ (x) otherwise

µτ =

{
sizeof (µρ (x)) µρ (x) ∈ Shared

µρ (x) otherwise
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Transitions with abstract tags. The transition relation

over machine states with abstract tags is a direct adapta-

tion of the concrete transition relation to use abstract tags.

This entails few minor changes. (We keep using the same

notations as in Section 4, for brevity.)

Firstly, the Safe() predicate needs to perform bound check-

ing using abstract tags. This poses no issues, as we can trans-

late any (unbounded) map sizeof to a bounded abstract map�sizeof (T ) = if T ∈ {ctx, stk} then sizeof (T ) else T .
Note that this change does not lead to more conservative

checks regarding potential memory safety violations, since

the size of every region is still being tracked precisely.

Secondly, as we can no longer tell whether two pointers

to a shared region of size K point to the same region or

not, we strengthen Safe() to forbid subtraction and less-than

comparison between such pointers.

Safew := x−y (σ̂ ) = eτ (x) = eτ (y) ∧ eτ (y) < TShared
∨ eτ (y) = num.

Safeassume(x ≤y)(σ̂ ) = eτ (x) = eτ (y) ∧ eτ (y) < TShared .

Finally, we need to weaken the filtering done by checking

inequalities, since two pointers to shared regions might not

be equal, even if they have the same offset and abstract tag.

We do so by adding the following transition:

⟨assume(x,y), σ̂ ⟩ ⇒ σ̂ if eτ (x) = eτ (y)∧eτ (y) ∈ TShared .

Definition 5.1. A state ((eτ , µτ ), (en , µn), ζ ) ∈ �State is ad-
missible if
(i) dom(µτ ) = dom(µn), and
(ii) ∀c ∈ dom(µτ ).µτ (c) , num → ζ ∩ c = ∅.

Our concrete semantics as well as the one we just defined

does not produce arbitrary states; it ensures that the memory

does not contain overlapping cells and that no addresses

containing pointer values can be partially read.

Lemma 5.2. If ⟨cmd, σ̂ ⟩ ⇒ σ̂ ′ and σ̂ is admissible then σ̂ ′

is also admissible.

Lemma 5.3. If σ ∈ State is a reachable state of P then β(σ )
is admissible.

Thus, in the following, unless stated otherwise, we rede-

fine �State to consider only admissible states.

We say that P is safe to execute with abstract tags if no
execution of P according to the transition relation over ma-

chine states with abstract tags starting at a state β(σ ), where
σ ∈ State is an initial state, produces the error state.

Lemma 5.4. If P is safe to execute with abstract tags then P
is safe.

5.2 Bounded Abstraction
The abstract interpretation algorithm computes an over-

approximation of the reachable states of a program when it

executes overmachine stateswith abstract tags.We construct

our analysis in a parametric manner on top of a numeric do-

main DN and a tag domain DT , under the assumption that

these domains come equipped with abstract transformers

capable of handling variable-manipulating programs. (We

make our assumptions more precise in the following.)

The main challenge we face is the need to handle load

and stores operations. Our solution is to maintain a variable

for every one of (the finite number of) possible cells in the

memory, and instantiate the underlying domains to track

the values as if every cell is a (syntactic) analysis variable:

V = Register ∪ Cell .

(For clarity, we write v(a,sz) when treating (a, sz) as a vari-
able.) The tricky part of the encoding is the need to account

for overlapping stores and unaligned loads, as unlike in stan-

dard variable manipulating programs, assigning a value to a

cell (e.g., v(a,4)) may affect values of other cells (e.g., v(a,2)).

Assumptions. Before describing our analysis, we list our

assumptions regarding the underlying parametric domains.

We expectDN to be equipped with a least upper bound op-

erator ⊔N , and, if necessary to ensure termination, a widen-

ing operator ∇N . The tag domain DT is required to be ac-

companied with a least upper bound operator ⊔T .

The numeric domain DN and the tag domain DT are

used to abstract mappings from analysis variables to inte-

gers and (a bounded set of) abstract tags, respectively. Thus,

we assume to have appropriate concretization functions

γN ∈ DN → 2
V→Z

and γT ∈ DT → 2
V→T

.

We expect DN to come equipped with abstract transform-

ers JcmdK♯N (·) which can conservatively over-approximate

assignments of arithmetic and boolean expressions to vari-

ables, and a havocw operation (sometimes called forget)
which abstracts away any information pertaining to a vari-

ablew . These requirements are quite standard. For example,

the Interval, Zone, Octagon and Polyhedra domains satisfy

our requirements.

The abstract transformers over the tag domain JcmdK♯T (·)
should support commands pertaining to variable assign-

ments operations, assignments of constants sets of abstract

tags to variables, and checking whether an analysis variable

may have a particular abstract tag assigned to it.

Abstract domain. The analysis is based on an abstract do-

main Σ♯
which is a cartesian product of a numerical domain

DN , the tag domainDT , and two powerset domains, ordered

by the superset relation. The first, defined over Address, con-
servatively tracks the addresses in the stack region contain-

ing numerical values. The second, defined over Cell, keeps
track of the set of memory cells containing valid values.

σ ♯ = (θ ,d, ζ ,δ ) ∈ Σ♯ = DT (V) × DN (V) × 2
Address × 2

Cell

The first two components of the abstract state containmay
information, namely, what may the numerical values and

abstract tags of the registers and of thememory cells. The last
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J∗p :=sz xK♯(θ ,d, ζ ,δ ) =
(Jv(a,sz) :=sz xK

♯
T (θ

′), Jv(a,sz) :=sz xK
♯
N (d

′),

ζ ′,δ ′ ∪ {(a, sz)}) A = {a}

(θ ′,d ′, ζ \ Footprint,δ ′) 1 < |A|

θ ′ = Jv(a,sz) :=sz T | (a, sz) ∈ OverlapK♯T (θ )
d ′ = Jhavocv(a,sz) | (a, sz) ∈ OverlapK♯N (d)

ζ ′ =

{
ζ ∪ Footprint θ (x) = {num}

ζ \ Footprint otherwise

δ ′ = δ \ Overlap

Jw :=sz ∗pK♯(θ ,d, ζ ,δ ) =
(Jw :=v(a,sz)K

♯
T (θ ), Jw :=v(a,sz)K

♯
N (d), ζ ,δ )

|A| = 1 ∧A = {a} ∧ (a, sz) ∈ dom(θ )

(Jw := {t}K♯T (θ ), Jhavoc wK
♯
N (d), ζ ,δ ) otherwise

A = {a ∈ Address | Jassume(p =a)K♯N (d) , ⊥}

Footprint = {a + i | a ∈ A ∧ 0 ≤ i < sz}

Overlap = {c ∈ Cell | a ∈ A ∧ c ∩ (a, sz) , ∅}

t = if Footprint ⊆ ζ then num else inv

Figure 6. Abstract semantics for load and store to the stack.

two components contain must information, namely, which

of the memory cells are definitely present in the memory

and which address in the stack region are used to represent

numerical values.
1

The join operator is defined in the standard way via lifting:

(θ1,d1, ζ1,δ1) ⊔ (θ2,d2, ζ2,δ2) =

((θ1 ⊔T θ2), (d1 ⊔N d2), (ζ1 ∩ ζ2), (δ1 ∩ δ2)) .

The concretization functionγ ∈ Σ♯ → 2
�State

maps abstract

states (θ ,d, ζ ,δ ) to the set of admissible machine states with

abstract tags they represent. γ considers only states which

agreewith the values and abstract tagsmappings represented

by θ and d , respectively, on δ—the set of memory cells which

must contain valid values—and in which a superset of the

addresses in ζ contain numerical values:

γ (θ ,d, ζ ,δ ) = {(eτ , µτ ), (en , µn), ζ
′) ∈ �State |

∃f ∈ γT (θ ).eτ = f |Register ∧ µτ |δ = f |δ ∧

∃д ∈ γN (d).en = д |Register ∧ µn |δ = д |δ ∧

δ ⊆ dom(µτ ) ∧ ζ ⊆ ζ ′} .

5.3 Abstract Transformers
The abstract transformers are straightforward for the Safe
predicate and most of the instructions defined in Figure 4.

Figure 6 defines the abstract transformers pertaining to

loading a value from the stack region or storing into it. These

operations are reduced to standard variable assignments

in DN and DT , while updating the format set ζ so that it

1
The last component (δ ) is used when validating memory safety.

always hold only addresses that cannot possibly hold parts

of pointers. We distinguish between two cases: accesses to

a precisely known address and “fuzzy” accesses to location

not known precisely. Such fuzzy writes may only remove
memory cells from the memory and the set ζ .
Technically, the set A contains the addresses in the stack

that pmight point to. Thus, if |A| = 1 orA = {a} the analysis
can determine the precise address that p points to. Footprint
contains the addresses that the operation might access, and

Overlap all the memory cells which overlap these addresses.

Note that a store operation removes any constraints on the

numerical values stored in overlapping memory cells and on

their abstract tags.

When the abstract tag of a pointer may be some other

(valid) memory region, we perform join over all possibilities

in the standard way. Such writes, like fuzzy writes, may only

result in destruction of memory cells and in a smaller ζ .
We say that P is verified to be safe if it does not reach the

error state according to the abstract transition relation.

Lemma 5.5. If P is verified to be safe then P is safe to execute
with abstract tags.

Theorem 5.6. If P is verified to be safe then P is safe.

6 Verifying eBPF Programs
We implemented a prototype verifier called PREVAIL which

is publicly available at [13]. PREVAIL translates eBPF bina-

ries into a CFG-based language understood by Crab [30]—a

parametric framework for modular construction of abstract

interpreters. Crab provides a simple three-address instruc-

tion set that includes boolean/arithmetic/bitwise operations,

gotos, assumes, assertions, and array operations. We encode

abstract tags as constant numbers and used the same abstract

domain to track values and tags together. We handle null

checks by tracking absolute values of pointers in addition to

offsets, and use a shadow array of tags for each byte in the

memory.

6.1 Handling Machine Integers
Our formal description is expressed in terms of mathematical,

unbounded integers. However, eBPF programs are aimed at

performance; they deal with machine words, and arithmetic

is defined modulo 64 bits. This has two related but distinct

implications: integer arithmetic may overflow, and pointer

arithmetic may overflow. PREVAIL handles both cases in a

sound manner.

Integer overflow. To deal with integer overflow and un-

derflow, we check after each arithmetic operation that the

(mathematical) value of the result is representable in 64 bits.

If not, the result is set to a non-deterministic value.

Pointer overflow. Pointers are tracked as offsets from some

region using a numerical domain that relies on mathematical

integers. This poses no problem for verifying accesses to
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fixed-sized memory regions because if pointer arithmetics

using mathematical integers produces an offset smaller than

the fixed bound, so would 64 bit arithmetic.

However, the way packet accesses are handled requires

comparison between the data_end and a potentially out-of-

bounds pointer. Allowing such comparison might be unsafe,

as demonstrated by the following program:

if (data_start + 4098 < data_end)

*( data_start + 98) = 7;

This programmight seem safe, but if the packet is allocated

at address 2
64 − 98 and its size is 8, then data_start + 4098

overflows, and the pointer comparison holds. Next, we have

data_start + 98 == NULL , and the resulting null-dereference

crashes the system.

To overcome this issue, we assume a predefined maximum

size for the packet (64K, as assumed by the Linux verifier),

and disallow comparisons on pointers that might reside be-

yond it. For example, consider the program in Table 3. To

successfully verify the program the verifier needs to be able

to infer that the value of r5 is within the range 0..64K .

6.2 Additional Supported Features
We now survey some features eBPF of programs were omit-

ted from the formal description which our analyzer supports.

Function calls. eBPF programs utilize many predefined li-

brary functions. These functions may write to a segment of

the stack given as a parameter; we model this by marking

the parts of the stack they write to as containing unknown

numerical values. Functions also invalidate registers r1..r5.

Maps. In the full eBPF language the instruction shared re-
ceives as an argument a special tag map, denoting the in-

kernel data structure that maps keys to shared regions. Point-

ers to such maps are mostly loaded statically, using a special

loadFd instruction. Tracking these maps is straightforward.

Arithmetic and division by zero.Many arithmetic opera-

tions other than + and − are supported. The analysis dele-

gates this work to the numerical domains given as parameter.

Following the existing verifier, we treat division in a special

way and check for division-by-zero errors at runtime.

Bit manipulations. Bitwise operations are not tracked pre-
cisely. Instead we use efficient over-approximations, e.g.,

we approximate w &=x (bitwise and) when x > 0 with

assume(w < x); some memory accesses rely on this property

to make sure the access is within bounds. Similarly, memory

writes may trim upper bits of the representation; in the im-

plementation we track precisely only stores of full register (8

bytes), forgetting any trimmed value. eBPF also supports 32

bit arithmetic, but we did not encounter such instructions.

Unsigned comparison. Our analysis tracks signed values,

yet eBPF has instructions that compare the unsigned value

that is represented in a register. Instead of modeling this

precisely, we allow any value to be both unsigned-less than

and unsigned-greater than any other value.

Privileged programs. Some types of eBPF programs, par-

ticularly those intended at tracing, are privileged and are al-

lowed to leak kernel information. To analyze these programs,

it is enough to treat inv as if it was num in the analysis.

6.3 Unsupported Features
Our verifier does not support the following eBPF features;

programs using them were removed from our benchmarks.

Map-in-map. We do not support hierarchical maps, i.e.,

maps which hold pointers to other maps. We encountered

two programs using this feature.

Packet reallocation.We do not support changing the po-

sition or size of the packet. Support for this feature requires

invalidation of all the pointers to the packet region. We en-

countered four programs using this feature.

Internal eBPF functions. A relatively new eBPF feature is

the support of user-defined functions. We did not encounter

such functions in our benchmarks, and thus implemented

an intra-procedural analysis.

Miscellaneous. eBPF defines several additional program-

type specific constraints, such as disallowing access to cer-

tain fields of the context or disallowing unaligned writes

to certain fields. Support for these constraints has not been

implemented but can be added in a straightforward way.
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Figure 9. Analysis time (secs).
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Figure 10.Memory usage (GB).

7 Empirical Results
Our evaluation aims to characterize the verification algo-

rithm described in this paper in terms of: (1) Precision, i.e.,

the ability to verify real-world eBPF programs with few false

positives; (2) Efficiency and scalability; (3) Handling of pro-

grams with loops.

We demonstrate on a large set of real-world eBPF pro-

grams that our verifier is at least as precise in practice as

the current Linux verifier, despite giving up path informa-

tion. Furthermore, it is able to correctly verify programs

where the Linux verifier returns false positives. We show

that in spite of its simplicity, our analysis is adequate for

verifying eBPF programs, given a suitable numerical abstract

domain. For the latter, we show that the Zone domain is

sufficiently powerful, just like more costly domains such as

Octagon and Polyhedra. We were able to verify all but one of

the eBPF programs we have found in the wild within a few

seconds. Furthermore, our verifier enjoys better asymptotic

scalability than the Linux verifier. Finally, we apply our tool

to successfully verify several programs with loops.

The experiments were performed on kernel 4.19, using a

PC with a 3.40GHz Intel Core i7 CPU and 32GB of RAM.

7.1 Benchmarks
We used a set of 192 programs from six projects: linux (86
programs), a collection of eBPF programs from the Linux

kernel repository; linux-prototype (23 programs), which in-

clude programs of similar purpose; ovs, programs from the

Open vSwitch project [9] (18 programs); suricata [11] (5 pro-
grams), an intrusion-detection system; and cilium [3] (24

programs) and cilium-tests (36 programs), a project provid-

ing in-kernel container networking. Three of these projects

(linux, ovs and suricata) guided our design and implementa-

tion, and the others served as a final evaluation. The total

number of instructions in each project is given in Figure 7.

Our benchmark programs are available at [12].

The only non-fixed parameter in our experiments is the

numerical abstract domain used to keep track of registers

and memory contents. After some preliminary tests, the

numerical abstract domains used in our final evaluation are:

• interval: classical Intervals [21].
• zone-crab: Zone using sparse representation and Split

Normal Form [29].

• zone-elina: Zone using online decomposition [50].

• oct-elina: Octagon using online decomposition [48].

• poly-elina: Polyhedra using online decomposition [49].

The interval domain is too imprecise to be used in practice,

we include it merely as a baseline. We did not include Apron

domains [32] since Elina domains supersede them.

7.2 Precision of the Analysis
Zone (zone-crab and zone-elina) and Octagon (oct-elina)
prove safe all but one of the 192 programs. The non-relational

interval domain fails to verify 64 programs. The domain poly-
elina fails to verify 21 programs where zone-crab succeeds.

2

7.3 Verification Cost
Figure 9 shows the execution time in seconds of the fixpoint

algorithm using different numerical abstract domains as a

function of the number of instructions in the program. As

can be seen from the plot, zone-crab is significantly faster

than the other domains, except interval. The actual runtime

of zone-crab is roughly linear in the number of instructions,

despite its cubic worst-case asymptotic complexity.

Figure 10 shows the memory usage of the verifier,
3
as

a function of the number of instructions. Admittedly, the

memory consumption of zone-crab, while better than other

relational domains, is still unacceptable for an in-kernel ver-

ifier. We plan to address this issue by delegating the fixpoint

computation to the untrusted user, and leaving only the final

iteration to a trusted in-kernel validator.

2
This result might seem surprising, since the Polyhedra domain is more

precise than both Zone and Octagon. However, the implementation uses 64

bit integers for representing the coefficients, and falls back to top when the

coefficients cannot be represented precisely using 64 bit.

3
Extracted from the resident set size.
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7.3.1 Comparison with the Linux Verifier
A fair comparison with the Linux verifier is complicated

because our benchmarks are biased; these are programs that

pass the verifier. Project maintainers do not publish pro-

grams that were valid but rejected (false positives), rightfully

rejected (true positives) or wrongfully accepted (false nega-

tives). The Linux verifier works by exhaustively exploring

program paths, timing out after analyzing a pre-defined num-

ber of instructions (1 million in the current implementation).

eBPF programs are carefully crafted to fit within this limit. It

is therefore not surprising that the Linux verifier was faster

than our algorithm across all benchmarks.

Next, we test our verifier on safe programs rejected by

the Linux verifier due to lack of precision. We search the

repositories for false positives, where the developers had to

modify their code to suppress verifier errors. We found nine

such commits. Our verifier was able to prove the safety in

all these examples. Interestingly, some of these issues were

filed as bug reports, resulting in a fix to the Linux verifier.

In analyzing these fixes, we discovered that Linux relies on

syntactic pattern matching and ad hoc case analysis to derive

bounds on the values of program variables. For example, in

one case the verifier recognized the data + X > data_end
pattern, but not data + X <= data_end. It therefore does
not come as a surprise that the verifier is highly fragile.

7.3.2 Verifying Programs with Loops
The Linux eBPF toolchain provides limited support for loops

with static bounds by unrolling them in the compiler. This

might seem sufficient given that eBPF programs must have

statically bounded execution times. In practice, this proved

a major pain point for developers, forcing them to do “crazy

things” [20] to work around the limitation. Recall that the

Linux verifier works by exhaustively enumerating program

paths. A loop with N branches and i iterations yields N i

paths. We illustrate this effect using the synthetic benchmark

from Example 3.4 (Section 3), where the number of paths

is polynomial in VALUE_SIZE. As can be seen in Figure 11,

for (i=0; i<IPV6_MAX_HEADERS; i++){

switch (nh) {

case NEXTHDR_NONE: return INVALID_EXTHDR;

...

case NEXTHDR_AUTH: case NEXTHDR_DEST:

if (skb_load_bytes (...) < 0)

return DROP_INVALID;

nh = opthdr.nexthdr;

len += (nh == NEXTHDR_AUTH)

? ipv6_authlen (& opthdr)

: ipv6_optlen (& opthdr );

break;

default: ... return len;}

}

(a) Skip over a chain of IPv6 extended headers.

for (i=0; i<ARRAY_SIZE(IPCACHE4_PREFIXES ); i++){

info = ipcache_lookup4 (&map , addr ,

IPCACHE4_PREFIXES[i]);

if (info != NULL) return info;

}

(b) Cache lookup (C macros expanded for readability).

Figure 12. Example loops from the cilium project.

the runtime of the Linux verifier grows polynomially until

hitting the complexity limit at 69 iterations.

Path explosion forces the developers to either simplify

the body of the loop or pick small loop bounds to avoid the

exponential path explosion. Figure 12 illustrates this using

two examples from the cilium project. The first example

(Figure 12a) iterates through IPv6 extended headers, deter-

mining the size of each header in order to locate the next one.

It contains several branching statements, yielding multiple

paths through the body of the loop. As a result, the devel-

opers had to impose an artificially low iteration bound of 4

(in reality the number of IPv6 headers is only bounded by

the maximum packet size), sacrificing the ability to process

packets with more headers in order to pass the verifier.

In the second example (Figure 12b), the simpler loop body

allows for larger bounds (the loop bound here is equal to

the size of the IPCACHE4_PREFIXES array); however the ex-
act bound accepted by the verifier depends on the context

where the loop is instantiated. For instance, executing multi-

ple loops sequentially hasmultiplicative effect on the number

of paths, thus introducing yet another exponential blowup.

In fact, the developers had to establish safe bounds exper-

imentally [1]. Recently, as the code instantiating the loop

became more complicated, they were forced to reduce the

size of the array at the cost of some performance degrada-

tion [2]. The eBPF community has made several attempts

to introduce loop support in the verifier [28], but they did

not succeed so far. In contrast, our verifier does not suffer

from path explosion, as it merges paths automatically using
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join and widening operators. As can be seen in Figure 11, it

scales linearly on the synthetic benchmark (note that in this

example we deal with unrolled loops; our tool can verify this

example without unrolling).

We obtain additional real-world benchmarks by searching

ovs, cilium, and Linux test project repositories for commit

messages indicating that a particular change was needed to

overcome the verifier complexity bound. We found six such

occasions, where developers refactored the code by reducing

loop bounds, pushing conditional statements down in the

control flow graph, etc. In all cases we were able to verify

the version of the program that caused the Linux verifier to

hit the complexity bound. Furthermore, verification time did

not increase compared to the refactored version.

We implemented six additional tests that use loops to copy,

compare, initialize the content of memory regions, compute

checksums, etc. These operations frequently occur in eBPF

programs, but currently only for small, fixed-size memory

regions that can be handled using loop unrolling. In contrast,

our examples use variable-size loop bounds. We were able

to verify each of these programs in under 0.3 seconds.

8 Related Work

Securing kernel extensions. The OS community has ex-

plored numerous techniques to safely execute untrusted ex-

tensions, including the use of safe programming languages [15,

17, 27], hardware-based isolation [34, 51], and binary rewrit-

ing [46]. The main strength of eBPF is that it executes un-

trusted code safely with essentially zero overhead, due to the

similarity with modern computer architectures. At the same

time, eBPF extensions are limited in scope, as they can only

be used to perform a restricted set of functions and have a

very narrow interface to the rest of the kernel.

There exists a body of work on automatic verification

of kernel extensions using model checking [16, 33], static

analysis [4, 42], and symbolic execution [19]. While effective

at finding bugs, these tools are neither sound not complete.

As such, they are not applicable to untrusted extensions that

may contain malicious code crafted to bypass the verifier.

Wang et al. [40, 53] present a verified compiler from BPF

(not eBPF) bytecode to x86. Their correctness proof estab-

lishes that compiled x86 code preserves the semantics of the

BPF program. It furthermore guarantees that the compiler

only accepts memory-safe programs; this is straightforward,

since classic BPF allows only constant-offset stack access,

and packet accesses are checked at runtime.

Abstract interpretation. Abstract interpretation has been

applied to prove memory safety of both high level and low

level programs [23, 25, 26, 39, 43].

Astrée [18] is a static analyzer for low-level structured C

code, specialized for applications such as the flight control

software. Due to its huge success on real-world applications,

Astrée has had a profound impact on the design and imple-

mentation of static analysis tools, including our tool.

C Global Surveyor (CGS) [52] is an array-bound checker

of embedded programs such as flight control software. CGS

uses pointer analysis and a numerical domain that can refine

each other during the analysis. It can analyze large code

bases up to 280 KLOC with 80% precision. PREVAIL targets

a rather narrow class of programs, thus it does not need a

pointer analysis to partition memory into disjoint regions

since regions in eBPF programs can be identified statically.

Furthermore, it can leverage the statically-known size of the

scratch memory to reason very precisely about its contents.

Our abstraction of the stack region can be seen as a spe-

cialized version of Miné [37], which is a memory abstract

domain that produces a dynamic mapping from a flat col-

lection of abstract cells of scalar type to the set of accessed

memory locations, while taking care of byte-level aliases.

Ouadjaout et al. [41] proves functional properties of de-

vice drivers in TinyOS. They precisely model the hardware

state, interrupts and tasks queues. They focus on dynamic

partitioning techniques [44] for achieving path-sensitivity.

In contrast, our evaluation shows that path-sensitivity is not

needed for precise analysis of eBPF programs.

9 Conclusions
eBPF presents a valuable opportunity for the verification

community to apply state-of-the-art program analysis tech-

niques in a domain where the need for verification is already

widely accepted by developers. A verifier built on a sound

theoretical foundation has the potential to dramatically sim-

plify eBPF programming, enable new classes of programs,

while providing stronger security guarantees.

Our work demonstrates that such a verifier can be built

using the framework of abstract interpretation. We propose

an abstraction for eBPF programs that uses Zone abstract

domain adapted to track the contents of low-level memory.

Our evaluation shows that the proposed abstraction is both

precise and efficient for real-world eBPF programs.
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